

envwi sense
ECE 403 Final Report

Timothy Albert & Ian Maines

May 2, 2014

The University of Maine

i

Abstract

The design, implementation, testing, and validation of a wireless temperature and humidity

sensor network are described. Known as envwi sense, this sensor network is intended to

measure the temperature and humidity of a remote location and wirelessly transmit the data to a

central location to be logged and displayed. The wireless transmitters have a line-of-sight

operable distance of approximately 450 feet. The project was calibrated and extensively tested

for both sensor accuracy and for data transmission robustness using a climate controlled

chamber. The project met and exceeded all specifications described in the project proposal.

Temperature measurements were calibrated from 0
o
C to 38

o
C with an accuracy of ±3

o
C.

Humidity measurements were calibrated from 15% RH to 85% RH with an accuracy of ±8% RH.

The data gathered by envwi sense is stored in CSV files, a database, and graphically displayed

via a web page.

ii

Table of Contents
ABSTRACT --- I

TABLE OF CONTENTS --- II

LIST OF FIGURES --IV

LIST OF TABLES --IV

1 INTRODUCTION -- 1

2 THE BREAKDOWN --- 2

2.1 SLAVE NODE -- 3

2.1.1 Slave Node Hardware -- 3

2.1.1.1 Power Supply --- 4

2.1.1.2 Sensors --- 4

2.1.1.3 Sensor Drivers and Measurements --- 4

2.1.1.4 Microcontroller and XBee --- 5

2.1.2 Slave Node Software --- 5

2.1.2.1 Initialization--- 6

2.1.2.2 Main Loop Execution --- 6

2.1.2.3 Sensor Reading and Data Acquisition -- 7

2.1.2.4 Packet Description -- 7

2.1.2.5 UART Interrupt and Packet Handling --- 8

2.2 MASTER NODE --- 9

2.2.1 Master Node Hardware -- 9

2.2.2 Master Node Software --- 9

2.2.2.1 Main Code --- 10

2.2.2.1.1 Initialization --- 11

2.2.2.1.2 Data Acquisition and Communication with Slave Nodes -- 11

2.2.2.1.3 Data Processing and Logging --- 11

2.2.2.1.4 Signal Handling for Program Termination --- 12

2.2.2.2 Database Logging --- 12

2.2.2.3 Web Presentation -- 12

3 DETAILS --- 13

3.1 SLAVE NODE -- 13

3.1.1 Slave Node Hardware -- 13

3.1.1.1 Power Supply -- 13

3.1.1.2 Sensors -- 14

3.1.1.3 Sensor Drivers and Measurements -- 14

3.1.1.4 Microcontroller and XBee. --- 15

3.1.2 Slave Node Software --- 16

iii

3.1.2.1 Data Transmission as Packets --- 16

3.1.2.2 Interrupts--- 16

3.1.2.3 Data Representation -- 17

3.1.2.4 Microcontroller --- 17

3.2 MASTER NODE --- 18

3.2.1 Master Node Hardware --- 18

3.2.2 Master Node Software --- 18

4 RESULTS -- 19

4.1 CALIBRATION AND TESTING --- 19

4.2 TEMPERATURE RESULTS -- 20

4.2 RELATIVE HUMIDITY RESULTS --- 21

4.4 DATA DISPLAY -- 22

5 CONCLUSIONS -- 24

APPENDIX A: ENVWI SENSE PROJECT PROPOSAL--- 25

APPENDIX B: PCB LAYOUTS --- 26

APPENDIX C: PROJECT SCHEMATICS AND PARTS LIST --- 27

APPENDIX D: DATASHEETS -- 29

APPENDIX E: RPISERIALCONFIG -- 32

iv

List of Figures
FIGURE 1: ENVWI SENSE BLOCK DIAGRAM -- 2

FIGURE 2: SLAVE NODE SOFTWARE BLOCK DIAGRAM -- 6

FIGURE 3: DATA PACKET STRUCTURE. --- 8

FIGURE 4: MASTER NODE SOFTWARE BLOCK DIAGRAM --- 10

FIGURE 5: TEMPERATURE VALIDATION --- 21

FIGURE 6: HUMIDITY VALIDATION -- 22

FIGURE 7: WEBPAGE DISPLAY. --- 23

FIGURE 8: SENSOR BOARD PCB LAYOUT -- 26

FIGURE 9: COMMUNICATIONS BOARD PCB LAYOUT -- 26

FIGURE 10: SCHEMATIC OF SENSOR BOARD HARDWARE -- 27

FIGURE 11: SCHEMATIC OF COMMUNICATIONS BOARD HARDWARE --- 27

List of Tables
TABLE 1: PROJECTS SPECIFICATIONS AND RESULTS -- 19

TABLE 2: PROJECT PARTS LIST --- 28

1

1 Introduction
This report describes the design and implementation of envwi sense, a wireless

temperature and humidity sensor network. Temperature and humidity are two important

concerns when monitoring the climate of a building or other space. For example,

computer data centers must maintain a specific temperature and humidity level to prevent

damage to equipment. Homes and other buildings must maintain certain temperatures to

prevent damage to plumbing and various other systems. Some devices similar to envwi

sense are home weather stations which monitor exterior conditions and display them

inside a home and a smart thermostat which monitors temperature within a home. With

this in mind, envwi sense was designed to wirelessly monitor the temperature and

humidity of remote locations and display that information to the appropriate personnel or

systems.

envwi sense is a wireless sensor network used to display and log temperature and

humidity data collected from various locations. The project has two main units. A “slave

node” contains a temperature sensor and a humidity sensor. The slave node is battery

powered and wirelessly transmits the temperature and humidity data, allowing it to be

placed remotely. A “master node” collects all of the data transmitted from the slave

nodes and stores the data in a database. The “master node” makes the values available in

comma separated value (CSV) files which make it easy to open with Excel and other data

analysis and statistical software. It also displays the humidity and temperature through a

webpage. envwi sense can support many slave nodes. For the purpose of this senior

project, only two slave nodes were built and used.

The project proposal for envwi sense may be found in Appendix A. The specifications for

envwi sense are as follows:

1. Measure temperature from 0oC to 38oC with an accuracy of ±3ºC

2. Measure humidity from 15% to 85% Relative Humidity (%RH) with an accuracy

of ±8%RH.

2

3. Test ranges using the climate control chamber at the Advanced Manufacturing

Center (AMC).

4. Design sensor circuits using unconditioned sensors to perform analog signal

processing for microcontroller readings.

5. Design for sensor network communication with at least two slave nodes under 10

seconds.

The fourth specification means that the sensors must not be directly readable by the

microcontroller, but must have some circuitry designed that would condition the output

signal of the sensors for reading by the microcontroller.

Section 2 of this report discusses the functional operation of the project. Section 3

examines design details. Section 4 details the results of the project, and finally Section 5

is the conclusion.

2 The Breakdown
The breakdown section of this report describes the functionality of envwi sense and all of

the major components that are used in the project. Figure 1 shows the block diagram of

the project.

Figure 1: envwi sense Block Diagram

The hardware for envwi sense consists of two major circuits, the slave node(s) and the

master node. The slave node power block consists of a battery with voltage regulation

3

circuitry to provide power to the various components. The sensors block consists of

sensors, sensor drivers, and measurement circuitry. The microcontroller is the brain of

the operation, reading temperature and humidity and communicating this data to an XBee

for wireless transmission to the master node. The master node consists or a Raspberry Pi

computer running the Linux operating system, which is connected to a wireless

transmitter used to communicate between each slave node and the master node. The

wireless transmitter used is an XBee. The project was designed to be modular. Two

main modules make up envwi sense, the slave node and the master node. The following

sections are divided accordingly for ease of understanding and organization.

Furthermore, the master node and slave node sections are broken down into hardware and

software sections.

2.1 Slave Node
The slave node is where most of the electrical engineering theory went into practice. The

slave node contains a temperature sensor, humidity sensor, current source,

instrumentation amplifier, and a 555 timer circuit. It also contains a microcontroller that

collects sensor measurements and sends the appropriate data to the XBee for data

transmission. Each slave node has a unique address used to identify the slave node on the

communication network. The slave node hardware is described in Section 2.1.1 and the

software in Section 2.1.2.

2.1.1 Slave Node Hardware
The slave node contains physical sensors, measurement circuitry, a power supply, and

data transmission circuitry. A printed circuit board (PCB) was designed for the slave

node. The slave node consists of two PCBs, the sensor board and the communications

board. The sensor board contains the sensors, sensor drivers, and power supply. The

communications board contains the microcontroller, logic level shifter, and XBee. The

PCB layouts are shown in Appendix B. Appendix C contains the project schematics and

parts list. The functions of the different hardware on the slave node are explained in the

following sections.

4

2.1.1.1 Power Supply
Hardware for the slave node begins with the power supply. The power supply consists of

a single 9V battery, a +5V linear voltage regulator, and a +3.3V linear voltage regulator.

The 5V linear voltage regulator powers the temperature and humidity sensor circuits. It

also powers the microcontroller. The 3.3V linear voltage regulator provides power to the

XBee. The PCB for the sensors was also designed to be driven by DC-DC converters as

well as linear voltage regulators. The DC-DC converters are more efficient than the

linear voltage regulators, therefore making the battery last longer and ultimately allowing

for more temperature and humidity data to be collected.

2.1.1.2 Sensors
The next pieces of hardware on the slave node are the sensors. Two types of sensors

exist on the slave node, one for temperature and the other for humidity. The temperature

sensor is a resistance temperature detector (RTD). The RTD has a positive temperature

coefficient, meaning the resistance increases as the temperature increases. The humidity

sensor is a capacitive humidity sensor, meaning the capacitance of the sensor changes as

the humidity changes. More specifically, as the relative humidity increases, the

capacitance also increases. The two sensor circuits are completely separate from each

other because they require very different biasing networks.

2.1.1.3 Sensor Drivers and Measurements
In order for each sensor to be measured, it must be excited with a specific signal by a

sensor driver. The sensor driver for the RTD consists of a current source. The current

source pushes a constant 100μA through the RTD. Since the resistance of the RTD

changes with respect to temperature and the current stays constant, the voltage across the

RTD will change with respect to temperature. The temperature is measured by

amplifying the voltage across the RTD using an instrumentation amplifier. The

instrumentation amplifier measures a differential voltage across the RTD and amplifies

the difference between the two inputs. The amplified signal is measured by an analog-to-

digital converter (ADC) pin on the microcontroller.

5

The sensor driver for the capacitive humidity sensor is a 555 timer. The humidity sensor

is used to set the output frequency of the 555 timer. Since the capacitance changes with

respect to humidity, the output frequency of the 555 timer will also change with

humidity. The humidity sensor is measured using a frequency counter on the

microcontroller. The frequency counter is further explained in Section 2.1.2.3 of this

report.

2.1.1.4 Microcontroller and XBee
The final pieces of hardware are the microcontroller and the XBee. The microcontroller

is used to measure the sensors and send the calibrated data to the XBee for transmission.

The gathering and transmission of data is done in software, as discussed in Section 2.1.2.

The XBee is used to wirelessly communicate with the master node. It operates at

2.4GHz. XBees have three operational modes. The “network coordinator” mode creates

a network for other XBees to connect to. Each XBee can relay data between two XBees

which are in range to itself, but out of range from each other. Each network of XBees

must have one network coordinator. The next mode is “router”. Routers can also relay

data between XBees that are out of range. The final mode is “endpoint”. XBees

configured as an endpoint cannot relay data and can be put to sleep to conserve power.

The master node operates as the network coordinator, and the slave nodes operate as

routers. In this way, each node is capable of relaying data to another node.

2.1.2 Slave Node Software
The software on each slave node has a simplified set of tasks, leaving most of the

computation to the master node, where more processing power is available. The slave

node software is responsible for reading raw data from the sensors, and communicating

that data on-demand to the master node. This code has been broken down into the blocks

shown in Figure 2.

6

Figure 2: Slave Node Software Block Diagram

Each block in Figure 2 is discussed in the following sections, beginning with

initialization. Descriptions of how each sensor is read may be found in section 2.1.2.3.

A description of the packets used to communicate data may be found in Section 2.1.2.4.

Descriptions for the packet handling, the UART interrupt, and data transmission may be

found in section 2.1.2.5.

2.1.2.1 Initialization
The slave node software runs on a PIC16F1783 microcontroller. The software starts by

initializing the internal clock, the serial communication module that communicates with

the XBee, the Analog to Digital Converter (ADC) that reads from the temperature sensor,

the timer module that reads from the humidity sensor, and the interrupt that receives data

from the master node through the XBee link. The packet receive buffer, which is used to

hold a partial packet until all eight bytes of the packet have been received, is also

initialized to empty.

2.1.2.2 Main Loop Execution
The main loop is designed primarily to hold the microcontroller in a communication idle

while it waits for the master node to request data. The communication idle is a state of

the slave node during which it is neither receiving nor transmitting data. During the

7

communication idle, the microcontroller continuously reads from each sensor while it

allows the serial interrupt to fill the receive buffer. When the master node requests data,

no delay is required for the slave node to read each sensor. The lack of a delay exists

because the data values for temperature and humidity are constantly updated. Once the

buffer is full with eight bytes, the software breaks out of the main loop into the code to

process the packet. Once the packet has been processed and a reply sent, the code

reenters the main loop and again continuously reads from the sensors, as described next.

2.1.2.3 Sensor Reading and Data Acquisition
Because the output of the temperature sensor is a temperature dependent voltage, the

temperature sensor is read using the ADC module. The ADC has 12-bits of resolution,

and the raw data can range from 0 to 4095, although for the temperature sensor designed

the range is much less than that. The time taken to read from the ADC module is

approximately 5µs according to the PIC16F1783 datasheet shown in Appendix D.

The humidity sensor is read using a timer. The output of the humidity sensor is a

humidity-dependent square wave, the frequency of which changes with humidity. The

frequency measurement of the 50% duty cycle square wave produced by the humidity

sensor is performed using a timer. The count of the timer is set to increment whenever

the timer detects a rising edge from the sensor. For the microcontroller to read from the

humidity sensor, the value of the timer is set to zero. The timer is then enabled and the

controller waits for one second. At the end of the one second, the controller stops the

timer from counting. The number of rising edges detected by the timer in one second is

equal to the frequency of the input signal. The frequency data is stored as a 2-byte

number. Both temperature and humidity are stored and transmitted as 16-bit integers.

2.1.2.4 Packet Description
Two types of packets were utilized in envwi sense, a data request packet and a data return

packet. A data request packet is transmitted from the master node to a specific slave

node and contains the address of the slave with which the master node is communicating

and the type of data it is requesting. A data return packet is transmitted from a slave node

8

to the master node and contains the data requested by the master node. Figure 3 shows

the packet structure.

Figure 3: Data Packet Structure.

As shown, the packets include features such as the “end of packet” byte to ensure data

integrity. The end of packet byte was used to correct a specific data transmission issue.

The issue was that during transmission in a high-noise environment such as the climate-

controlled chamber used for calibration and testing, it would sometimes happen that some

of the bytes of a packet would not be received. The receive buffer would fill the bytes

received from the first packet, and then the rest of the buffer would be filled by some of

the bytes from the next packet. Before the End-of-Packet byte was used, there were no

methods to detect this sort of transmission error, and when data was extracted from the

packet, it would be erroneous. The packets do not use a Checksum or CRC, partly

because the XBee uses a CRC on each byte transmitted by it and automatically

retransmits any byte that was corrupted in transmission.

2.1.2.5 UART Interrupt and Packet Handling
The receive buffer is filled by the serial interrupt using a global counter variable to track

how many bytes have been received. Once the buffer is filled by a packet, the packet is

checked to ensure that it is a valid packet. As discussed in Section 2.1.2.4, each packet

contains the address of the slave node to which or from which the packet was sent. The

address of the packet is checked against the address of the slave node receiving it. If the

9

packet was intended for the slave node, several other bytes in the packet are checked for

conformance with expected data. The packet is either discarded if these checks fail and

any new data in the receive buffer is flushed, or the packet is accepted and a reply is

constructed. To construct the reply packet, the slave node fills the packet with the most

recent data from each sensor. The slave node then transmits this packet to the master,

and resumes continuously reading from the sensors.

2.2 Master Node
The master node is the brain of envwi sense. The job of the master node is to

communicate with each slave node and make use of data collected from each node. The

master node performs the majority of the data processing; whereas, the slave nodes have

the simpler job of collecting and transmitting data upon the request of the master node.

2.2.1 Master Node Hardware
The master node has much less hardware compared to the slave node. The hardware

consists of a Raspberry Pi and an XBee. The Raspberry Pi is a small low-power Linux

computer used as the web server and data logger for the project. It collects data from the

slave nodes and stores the data in a database. The XBee is the wireless transmitter used

for communication between master and slave nodes. The Raspberry Pi communicates

with the XBee using the on-board 3.3V serial port.

2.2.2 Master Node Software
The master node runs three programs that work together to form the functionality of

envwi sense. The responsibility of each program is shown in Figure 4.

10

Figure 4: Master Node Software Block Diagram

Each of the programs used on the master node are discussed in the following sections,

beginning with the main code written in the C language, followed by the Perl script for

adding data to the database, and finally the PHP code used for the website.

2.2.2.1 Main Code
The main code is responsible for communicating with the slave node(s) via the XBee. It

handles all data communications and processing, and logs the data collected for viewing

and use. The data is stored in both raw and converted formats. The raw format is the

value read by the slave microcontroller. The converted format is the values in ºC and

%RH. The data is stored in comma separated value (CSV) files. Each time the program

runs, two CSV files are created. One file is created for the raw data, and the other file for

the converted data. Debug information is logged into a text file each time the program is

run. The collected data is also stored in a database in its converted form for use by the

website, or potentially other database applications. The main code consists of one

primary C code file and several other C header and code library files. Using Makefiles,

the libraries are compiled into a statically linked library, which is then linked with the

primary C code file by another make file.

11

2.2.2.1.1 Initialization
The main software operates first by allocating memory for packets, data, and strings

followed by configuring the Raspberry Pi’s on-board serial port to communicate with the

XBee. It then opens the files needed to log data and debug information. Once these

operations have been completed, the master node may begin communicating with slave

nodes. Communication with the slave nodes is done using 8-byte packets. A description

of these packets may be found in Section 2.1.2.4. Before the main program can be used

with the Raspberry Pi’s on-board serial port, some configurations on the Rasbian

operating system must be changed. See Appendix E for information on these

configuration changes.

2.2.2.1.2 Data Acquisition and Communication with Slave Nodes
The master node collects data from each slave node. It begins by requesting data from

each slave node. To accomplish this, it sends a data request packet to the slave node and

then waits for a response. The software will wait for a timeout period of two seconds for

a response before moving on to the next slave node. The master node does this until it

has collected data or timed out from each slave node in its list. During this process, data

is logged in the raw data log as well as the debug log. The debug log provides useful

information if a problem with the system ever occurs. Data processing begins once all of

the slave nodes have been read from since the slave nodes deliver data in the raw format

as read by the microcontroller. See Section 2.1.2.3 for more information about these

formats.

2.2.2.1.3 Data Processing and Logging
Data conversion is performed by the master node since the data is delivered from the

slave nodes as read by the microcontroller. Data conversion takes place using calibration

equations assigned to each slave node. Once the data has been converted from raw

format into degrees Celsius and % Relative Humidity, it is written to the CSV file. After

the converted data has been stored in the appropriate CSV file, the main program then

calls a Perl script and passes the data values to the Perl script as arguments. See Section

2.2.2.2 for information on the Perl Script. Once the data has been written into the

12

database by the script, the main code returns to the beginning of the list of slave nodes

and begins collecting data again.

2.2.2.1.4 Signal Handling for Program Termination
The Main Code can be terminated using several POSIX signals. These signals are

handled by the program in order for the program to terminate safely. The signals handled

are SIGINT, SIGQUIT, and SIGTERM. These are signals from the Linux operating

system which indicate that the program should quit. The primary signal used for this is

the SIGINT signal, which is generated when “Control+C” is entered into the terminal

from which the main program was run.

2.2.2.2 Database Logging
The main code uses a script written in Perl to write data into the database. The database

contains what is known as a ‘table’, which is a division of a database generally used to

contain related data. envwi sense uses a single table to store the data in the database.

Along with the stored data is a time stamp from the time that the data was collected. The

Perl script creates the table in the specified database if it does not exist and then inserts

the data into that table. The script then exits, returning an error code on failure.

2.2.2.3 Web Presentation
The data gathered by envwi sense is presented in graphical format on a web page. The

web page is served by a web server running on the Raspberry Pi, and a website written to

display data from the database. The web server used is Lightttpd with PHP5 and

SQLITE3 for databasing. The web page consists of one PHP file which displays data

from the database on a webpage. The PHP code makes use of Javascript in order to

dynamically display elements on the page, including the clock, program and slave node

status indicators, and the temperature and humidity data for the past hour. The graphs

use the graphing library Highcharts, and the data is inserted into the graphs using PHP to

load the data from the database.

13

3 Details
This section of the report describes the engineering design decisions made for envwi

sense and the reasons behind those decisions. Consistent with previous sections, this

section is divided into slave node and master node, and further into hardware and

software.

3.1 Slave Node
As mentioned previously, the slave node is the portion of the project that is placed

remotely to measure temperature and humidity and transmit it to a central location. The

following section describes the decisions made during the design process of the slave

node.

3.1.1 Slave Node Hardware
Most of the hardware design occurred in the slave node. The following sections detail

the design choices associated with hardware on the slave node.

3.1.1.1 Power Supply
The power supply consists of a 9V battery, which was used to power all of the

components for the slave node. The slave node needs 5V and 3.3V to power the various

components. Linear voltage regulators were chosen to provide the necessary voltages on

the sensor board and communication board. Two linear voltage regulators were used to

regulate the battery voltage from 9V to the required +5V and +3.3V. The LM7805 was

chosen because it provides a constant +5V output and does not require any biasing

resistors. The LD1117 was chosen because it outputs a constant +3.3V and also does not

require any biasing resistors. The 5V linear voltage regulator provides power to the

MCP6004 operational amplifier, the LM555 timer, and the microcontroller. The 3.3V

linear voltage regulator provides power to the XBee and the logic level shifter. As

previously mentioned in Section 2.1.1.1, the PCB was designed to use three-pin DC-DC

voltage regulators instead of the linear voltage regulators. Using the DC-DC regulators

allowed envwi sense to capture an additional three hours of temperature and humidity

data.

14

3.1.1.2 Sensors
To measure temperature, an RTD was chosen because of its sensitivity over a small range

of temperatures. Typically, thermocouples are used when the temperature will vary by

1,000 degrees Celsius. However, the proposed temperature range was only from 0ºC to

38ºC. Over the specified range, an RTD is more precise and accurate. The chosen RTD

also has a positive temperature coefficient.

To measure relative humidity, a capacitive humidity sensor was chosen because of its

response over a wide range of humidity. The proposed humidity range was from 15%

RH to 85% RH. This range cannot be covered by a resistive humidity sensor, therefore a

capacitive humidity sensor was chosen. The sensor works by exposing some of the

dielectric material of the capacitor to the surrounding air. The dielectric material absorbs

and releases moisture to maintain equilibrium with the surrounding air. As the water

content in the dielectric material changes, the dielectric constant of the material changes

and linearly affects the capacitance of the sensor.

3.1.1.3 Sensor Drivers and Measurements
The RTD is biased using a 100μA current source and the voltage across the RTD is

measured. Since the resistance changes relative to the temperature and the current stays

the same, then the voltage across the RTD also changes relative to temperature. A

current source of 100μA was used for power consumption and measurability reasons. A

smaller current would use less power but would also make the change in voltage smaller

as temperature changes, making the measurements less precise. A larger current would

result in a larger voltage swing as temperature varies, but the circuit would consume

more power. The extra power consumption would also generate heat which could cause

measurement errors with the circuit. The battery would drain faster and the slave node

would not transmit data for as much time.

The chosen RTD also played a factor in the design process. The RTD has a resistance of

100Ω at 0ºC and with a known 100μA, a power consumption by the RTD of 1μW occurs

at 0ºC. The RTD has a temperature rating from -50 to 500ºC and has a sensitivity of

15

3,850 ppm/
o
C. The current source was designed so that at 19

o
C, the center of the

specified temperature range, the output of the instrumentation amplifier would be 2.5V,

half way between the voltage references of the ADC. The schematic can be seen in

Figure 10 in Appendix C. Placing the output of the amplifier in the center of the voltage

range allows for maximum voltage swing in both directions which ultimately results in

maximum temperature swing.

An instrumentation amplifier was designed to amplify the small voltage across the RTD.

The gain of the amplifier was determined using (1).

 (1)

Where R4 = 20kΩ, R5 = 220kΩ, R7 = 10kΩ, and R9 = 100kΩ. The instrumentation

amplifier can be seen in Figure 10 of Appendix C. The instrumentation amplifier has a

calculated gain of 233V/V.

The capacitive humidity sensor was used as part of a 555 timer circuit. The 555 timer

output frequency is set by a charging capacitor. By placing the humidity sensor as this

capacitor, the output frequency of the 555 timer will change with respect to relative

humidity.

 (2)

The resistors R11 = 10kΩ and R12 = 120kΩ were calculated so that the output of the 555

timer would be 20kHz at a base capacitance of CH = 330pF. The microcontroller

measures the output frequency, and using a conversion equation, the humidity is

determined from the measured frequency.

3.1.1.4 Microcontroller and XBee.
The XBee was chosen from among other wireless transceivers due to its built-in software

redundancy, security, and other similar software features that make it reliable and useful

as compared to its competitors. The specific model of XBee was chosen due to its range

16

and cost. A low range XBee was selected as this project is not intended to bridge long

distances, which would reduce battery life. The cost of the XBee was also a factor since

each node in the project must have one, and they are the second most expensive part after

the Raspberry Pi, consisting of more than triple the cost of an entire slave node’s parts

alone.

3.1.2 Slave Node Software
The slave node software is used only to read from the sensors and communicate with the

master node. Limiting the amount of processing done by the slower microprocessor on

the slave node by delegating it to the faster master node increased the performance of the

system. Figure 2 in Section 2.1.2 shows the block diagram of the slave node software.

3.1.2.1 Data Transmission as Packets
The slave node uses 8-byte packets to transmit and receive data. Section 2.1.2.4

discusses the configuration of the two types of packets used. The packets were designed

with some redundancy, including some per-byte redundancy as well as the end of packet

field, designed to indicate a “framing error”. A framing error would occur if partial

packets were received by either the master or the slave. This byte successfully allows the

receiving entity to determine if a problem occurred during transmission, and discard the

packet if it is not valid. During the testing of the project, it was noted that if framing

errors were encountered, without a way to detect and recover from these, the project

would have no way to determine if the data received was valid, and would log data from

a garbage packet. The addition of redundancy into the packets allows the project to

recover from data transmission errors.

3.1.2.2 Interrupts
Interrupts can be configured on a processor to allow the processor to process data or

respond to a change immediately by interrupting the current operation and handling

whatever caused the interrupt. Interrupts were selected for receiving serial data so that the

microcontroller would not have to wait to receive data from the master node, or risk

losing a byte of incoming data if multiple bytes of data were received during some

microcontroller operation. Interrupts allow the microcontroller to handle the

17

asynchronous data communication from the master node. The use of interrupts allows

the microcontroller to read from the sensors while it is not communicating with the

master node so that when a request for data arrives from the master node, the slave node

has recent data to send it. This use of interrupts removesany latency needed to read from

each sensor before transmission.

3.1.2.3 Data Representation
Temperature and humidity data on the slave node are represented as 2-byte integers. This

representation standardizes data representation on the slave node among all sensor types,

and allows for more abstraction for data handling and transmission. The data on the slave

node consists exclusively of the raw values read from the sensors. The data is not

converted until after it is transmitted to the master node. Not converting the data from

raw format frees processing time on the slave node by delegating the conversion to the

more powerful master node, and also allows for both temperature and humidity data to be

transmitted in one packet.

Packets are constructed using a C struct. The C struct allows for type and bounds

checking rather than using a C array. The struct contains a single C array that is eight

bytes in length. The struct can be type-checked by the compiler and each instance of the

packet struct is guaranteed to contain an eight char array, thus removing the need for

bounds checking as the array is always guaranteed to be eight bytes long.

3.1.2.4 Microcontroller
The microcontroller unit (MCU) chosen for the project is the Microchip PIC16F1783.

This MCU was chosen for several reasons. First, the microcontroller is available in many

package types, including PDIP. The PDIP package type facilitates prototyping on a

breadboard without the need for breakout boards or waiting to test anything until a PCB

could be ordered. The variety of package types meant that transitioning to a surface

mount package once a PCB was available would also be an option. The 16F1783 has all

of the peripherals needed for the project and many more which facilitate expansion of the

project, and also has a 32MHz internal clock. The 32MHz clock is more than fast enough

to perform all of the necessary operations without compromising performance. Among

18

the MCUs meeting the above qualifications, the 16F1783 also stood out due to its low

power consumption and low cost operation.

3.2 Master Node
The master node is the controller of the sensor network and provides data acquisition and

logging to the project. The following describes in detail the design decisions involved in

the making of the master node.

3.2.1 Master Node Hardware
The master node consists of a Raspberry Pi and XBee. The Raspberry Pi was chosen due

to its small size, low power consumption, portability, low cost, and the built-in serial

port. As a Linux computer, the Raspberry Pi is able to easily store large amounts of data,

run a web server, and process more data than a standard embedded microcontroller, as

well as easily display data to a screen. Thus, the Raspberry Pi was chosen over a desktop

or laptop computer or a microcontroller. The Raspberry Pi is not the only small,

inexpensive Linux computer. However, among its competitors, it is generally less

expensive, is more widely in use, and has much documentation and support. Refer to

section 3.1.1.4 for information on the decision regarding the XBee.

3.2.2 Master Node Software
As discussed in Section 2, the master node software is written primarily in three

languages: C, PHP, and Perl. The program written in C performs the majority of the

work of the project as its function is to facilitate communication with the slave nodes and

log data. The C code uses a Perl script to write the data into a SQLite3 database. A Perl

script was chosen because it provides an interface between the C code and the database,

an intuitive SQLite3 library. The PHP webpage, composed of PHP, Javascript, and

HTML, reads from the database to display the data.

Temperature and humidity are the most important data used by the master node software.

The C code represents temperature and humidity as 2-byte integers when they are

received from the slave nodes. Once the data is converted to degrees C or % RH, they

are stored as floating point values. The floating point values natively allow for storage

19

and display the converted data as decimal numbers. Packets are represented as C structs

containing an eight byte array as discussed in Section 3.1.2.3. Temperature and humidity

data are represented in the SQLite3 database as “FLOAT”. The timestamp stored in the

database is of the type “DATETIME”, and contains the local date and time when the data

was measured.

The master node program that communicates with the slave nodes uses 8-byte packets to

transmit and receive data. These packets are described in Section 3.1.2. The details of

the packet design are discussed in Section 3.1.2.1.

4 Results
After extensive calibration and testing, the results of the envwi sense project are

described below. The specifications were met and well exceeded by the project as shown

in Table 1.

Table 1: Projects Specifications and Results

Specification Project/Ability

0ºC - 38 ºC ±3ºC Met

15%RH - 85%RH ±8%RH Met

Tested in Sub-Zero Chamber Yes

Sensor Conditioning Circuitry Designed and Used

10 Second Communication 5 Seconds

Section 4.1 describes how envwi sense was calibrated and tested, Section 4.2 shows the

results from the temperature validation data, Section 4.3 shows the results from the

humidity validation data, and Section 4.4 shows how the data is displayed.

4.1 Calibration and Testing
The sensors were tested and calibrated to a Cincinnati Sub-Zero Temperature Chamber.

The Sub-Zero Chamber is a large metal enclosure, with metal walls on the inside and

outside and insulation in between. The chamber is automated to vary temperature and

humidity. The sensors were tested over the entire specified range. During the testing,

some difficulties were encountered in establishing a reliable communications link

20

between the master node and the slave nodes. The master node was placed outside of the

Sub-Zero Chamber with the XBee’s antenna positioned through a hole in the wall, and

the slave nodes were placed inside. The metal walls of the chamber presented some

difficulty for the XBees to communicate, as they were all contained within a somewhat

small metal box. Another problem is that the Sub-Zero Chamber uses multiple large

compressor motors. It seemed that during the times that these motors were in operation,

the XBees would experience more difficulty communicating.

During the initial testing, many problems were encountered and much data was lost. This

data loss was due to the fact that the system had no way of telling if a packet had been

received correctly. The largest problem was a framing error, where only some of the

bytes in the packet would be received. A framing error means that the packet that was

read by the master or slave node would contain parts of multiple packets, or an

incomplete single packet. Initially the system had no method for recovering from this

error, and would log the faulty data until the program was restarted. Building error

checking into the packets allowed the system to recover from a framing error. Once the

error checking was added, some data was lost, but the system was able to recover from

this error condition.

To verify that the project met its temperature and humidity specifications, the Sub-Zero

Chamber was set to run two tests, one for temperature and one for relative humidity. The

chamber was set to test the limits of our specified range for both temperature and relative

humidity.

4.2 Temperature Results
The first test decreased the temperature in the chamber to 0ºC, held it there, and then

increased the temperature to 38ºC and maintained that temperature. The results are

shown in Figure 5.

21

Figure 5: Temperature Validation

As shown, when in steady-state, the sensors stayed within the ±3
o
C specification. Lost

data was chosen to be represented as zeroes to visually explain large gaps in the graph.

The data shown in Figure 5 was converted from the raw values using the following

calibration equations.

 (3)

 (4)

Equation (3) was the conversion equation for slave node 1, and (4) for slave node 2.

4.2 Relative Humidity Results
The second test held the humidity at 15% RH, and then brought it up to 85% RH.

Throughout the entire test, the temperature was held at 20
o
C. The results from the

humidity sensor validation are shown in Figure 6.

22

Figure 6: Humidity Validation

The relative humidity sensors also met the proposed specification. To get these results,

the following calibration equations were used:

 (5)

 (6)

Equation (5) is the conversion equation for slave node 1, and (6) for slave node 2.

4.4 Data Display
The collected data may be viewed on the project website. Figure 7 shows the web page as

it displays collected data.

23

Figure 7: Webpage Display.

As shown in Figure 7, the web page displays data collected and recorded from the

sensors. The website only displays data from the past sixty minutes. The website also

has displays indicating whether the project is running and the sensors are connected. If

the master node is intermittently unable to connect to a slave node due to the master node

not receiving a response from the slave node, the slave node status indicators will change

color and displays a warning that indicates that packets are being lost This is another

feature of the website that is shown in Figure 7. The Raspberry Pi has a limited amount

of RAM, and as databases are somewhat RAM intensive, accessing a large database is

slow. The web page displays a warning banner if the database has more than 8,000

entries so that the database may be trimmed if desired. The database will still operate

24

until the SD card on the Raspberry Pi is full. However, once the database contains more

than 12,000 entries, the PHP script which gets the data from the database will time out,

and the web page will not display any data.

5 Conclusions
This report described the envwi sense capstone project. envwi sense consists of a master

node that wirelessly receives temperature and humidity data from a slave node. The

slave node uses discrete components to measure the temperature and relative humidity

and makes the sensor output measurable by a microcontroller. A RTD is the type of

sensor used to measure temperature, along with a capacitive humidity sensor used to

measure humidity. XBees are used to transmit and receive the data wirelessly and the

Raspberry Pi is used to collect the data and display it to a web page. The envwi sense

project was tested to measure temperature from 0
o
C to 38

o
C with an accuracy of ±3

o
C,

and was also able to measure relative humidity from 15% RH to 85% RH with an

accuracy of ±8% RH. Extensive testing was performed to verify that the sensor network

met the specifications. The testing was completed in a Sub-Zero climate controlled

chamber. This chamber presented some difficulty for the XBees to communicate, but

through the integration of error checking into the packets, the system has been able to

recover from all communication difficulties presented by the chamber, with only minimal

data loss. This loss is not expected to impact the usefulness of the project, as the project

is not intended to work within confined metal walls or high noise areas. Overall, the

project works well and accomplishes its goals while displaying the data using a clean

interface, and meeting all specifications.

25

Appendix A: envwi sense Project Proposal

26

Appendix B: PCB Layouts

Figure 8: Sensor Board PCB Layout

Figure 9: Communications Board PCB Layout

27

Appendix C: Project Schematics and Parts List

Figure 10: Schematic of Sensor Board Hardware

Figure 11: Schematic of Communications Board Hardware

28

Table 2: Project Parts List

Reference PART NUMBER DESCRIPTION QUANTITY

UC1 PIC16F1783 Microcontroller 1

XB1 XB24-Z7SIT-004 Wireless transmitter 2

IC1 MCP6004 Quad Op-Amp 1

JSENS-(1,2), J5V-(1,1,2),

J3.3V-(1,2), J78SR, J1, J3V3-1,

JREG

MTA Connector MTA connector 11

CH HCH1000 Capacitive Humidity Sensor 1

C4, C7, C8, CV 0.1u 0.1uF Capacitor 4

C2, C6 0.33u 0.33uF Capacitor 2

R1, R2(sensor), R4 20k 20k Resistor .25W 3

R3 30k 30k Resistor .25W 1

R2(comm.) 100 100 ohm Resistor .25W 1

R5, R6 220k 220k Resistor .25W 2

R7, R8 10k 10k Resistor .25W 2

R9, R10, R11 100k 100k Resistor .25W 3

R12 120k 120k Resistor .25W 1

RTD PPG101B1 100 ohm RTD 1

IC2 LM555N 555 Timer 1

LD111733V LD111733V 3.3V Linear Regulator 1

LM7805C LM7805C 5V Linear Regulator 1

78SR3.3V 78SR3.3V 3.3V DC-DC Converter 1

78SR5V 78SR5V 5V DC-DC Converter 1

Q1 2N7000 MOSFET 1

- LLC Logic Level Converter 1

LED_XB LED_XB Communications LED 1

LED_UC LED_UC Microcontroller LED 1

PCB_SENSOR PCB_SENSOR Sensor and Power PCB 1

PCB_COM PCB_COMM Communications PCB 1

29

Appendix D: Datasheets

30

31

32

Appendix E: RPISERIALCONFIG

This appendix describes the steps necessary to configure the Raspberry Pi for use with

envwi sense. Although any serial port may be used, the on-board 3.3V serial port called

“ttyAMA0” was chosen. By default, this serial port is used as a console by the Rasbian

operating system. This appendix describes how to change that configuration so that the

on-board serial port may be used by envwi sense.

Two files must be modified in order to use the serial port. These are /boot/cmdline.txt

and /etc/inittab. Before modifying these files, it would be wise to create a backup of

them in case there is a problem with other system components caused by their

modification. The line in /boot/cmdline.txt that is in the current version of Rasbian

reads:

dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200

console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4

elevator=deadline rootwait

Note that the above code is a single line in the file. It must be modified to remove

mentions of ttyAMA0. The final result should read as follows

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2

rootfstype=ext4 elevator=deadline rootwait

Note that the above code is a single line in the file. Next, any line mentioning ttyAMA0

in /etc/inittab must be commented out. This can be done using the ‘#’ symbol.

In the current version of Rasbian, the end result will be as follows

 #T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

The Raspberry Pi will then be configured for envwi sense to use the serial port.

